
Journal of Global Optimization (2005) 31: 1–16 © Springer 2005

A Bilinear Algorithm for Optimizing a Linear Function
over the Efficient Set of a Multiple Objective Linear
Programming Problem

JESÚS M. JORGE
Department of Estadística, Investigación Operativa y Computación, University of La Laguna,
38271, La Laguna, Tenerife, Spain (e-mail: jjorge@ull.es)

(Received 16 September 2003; accepted 12 October 2003)

Abstract. The problem Q of optimizing a linear function over the efficient set of a multiple
objective linear program serves several useful purposes in multiple criteria decision making. How-
ever, Q is in itself a difficult global optimization problem, whose local optima, frequently large
in number, need not be globally optimal. Indeed, this is due to the fact that the feasible region of
Q is, in general, a nonconvex set. In this paper we present a monotonically increasing algorithm
that finds an exact, globally-optimal solution for Q. Our approach does not require any hypothesis
on the boundedness of neither the efficient set EP nor the optimal objective value. The proposed
algorithm relies on a simplified disjoint bilinear program that can be solved through the use of
well-known specifically designed methods within nonconvex optimization. The algorithm has been
implemented in C and preliminary numerical results are reported.

Key words. bilinear programming, global optimization, multiple objective linear programming,
optimization over efficient sets.

1. Introduction

Let X be a pointed polyhedron of Rn and let C be a k×n real matrix with
k�2. Then the multiple objective linear programming problem or, as usually
abbreviated MOLP problem, may be written as:

VMAX�Cx/x∈X�� (1)

We will suppose, without loss of generality, that:

X=�x∈Rn/Ax=b� x�0� (2)

where A∈Rm×n and b∈Rm are fixed real matrices.
Let P be a MOLP problem such as the one given in (1). Since typically

the objective functions of P are conflicting, the concept of an efficient solution
becomes especially useful in the analysis and resolution of P.

DEFINITION 1.1. A point x̄∈X is said to be an efficient solution of P if, and
only if, there exists no x∈X such that Cx�Cx̄ and Cx �=Cx̄.



2 J.M. JORGE

Throughout this paper we will use the following notation for vectors: For
x�y∈Rn, x�y means x�y and x �=y.
We shall denote by EP the efficient set, that is, the set of all efficient solutions,

for problem P.
The problem of main concern in this paper is the optimization of a linear

function over the efficient set EP of MOLP P. This problem, denoted henceforth
as Q, may be written as

max�vtx/x∈EP� (3)

where v∈Rn.
Since the importance of problem Q is beyond all doubt, having in fact been

discussed extensively in the literature (see, for example, Benson and Lee (1996)),
it will not be treated here.
From a mathematical point of view, problem Q is a difficult global optimization

problem because its feasible region, EP , is in general, a nonconvex set. Thus,
it can have many local optima that are not global.
Through the years, several procedures for solving Q have been suggested,

including of course the brute force method that makes use of the complete
enumeration of the efficient extreme points. To our knowledge, the first algorithm
that attempted to solve Q in a smart fashion was schematically described by
Philip (1972). This method was based on cutting planes. Later, Isermann and
Steuer (1987) outlined a similar procedure for the special case of minimizing an
objective function of problem P over EP . However, neither of these authors dealt
with implementation aspects of the algorithms. Ecker and Song (1994) developed
detailed methods for solving Q, based on Philip’s approach. But perhaps one of
the authors that has spent more effort on studying problem Q is Benson. Besides
theoretical studies, such as Benson (1984), where he analyzes the mathematical
structure of the problem, Benson has proposed several implementable methods for
Q which use different approaches than the previously employed. Among others,
in Benson (1991a) and Benson (1992) two relaxation algorithms are suggested.
More recently, Sayin (2000) has proposed a branch and bound algorithm that
carries out a top-down search of the efficient faces of the underlying MOLP
problem. Due to the difficulties found in the general solving of Q, a few special-
case procedures have been developed (see, for instance, Benson and Sayin (1994)
and Benson (1993)) and some heuristic methods for approximating an optimal
solution have also been proposed (see, e.g., Benson and Sayin (1993) and Sayin
(2000)).
In this paper we present a new proposal for finding an exact, globally-optimal

solution for problem Q. This algorithm needs to solve, in each iteration, two
subproblems: one of them is a simplified bilinear program and the other is an
ordinary scalar linear programming problem.
The algorithm presents a number of advantages, such as those of being

implementable, monotonically increasing and independent of any hypothesis on
the boundedness of the efficient set EP or of the optimal objective value.



A BILINEAR ALGORITHM FOR OPTIMIZING A LINEAR FUNCTION 3

The organization of this article is as follows: Section 2 summarizes some
relevant results concerning faces of a polyhedron and efficiency for the MOLP
problem. In the section that follows we give the theoretical foundations of our
procedure. In particular, we will see how we can choose an efficient face of
the efficient region that improves a certain objective level. Section 4 provides a
detailed statement of the algorithm and proves its convergence after a finite num-
ber of iterations. Additionally, a small example problem is solved for illustration
purposes. Section 5 contains our computational results on randomly generated
test problems. Some concluding remarks are given in the last section.

2. Definitions and Preliminaries

2.1. IDENTIFYING FACES OF A POLYHEDRON

For the purposes of our algorithm we need a convenient manner of identifying
an arbitrary face of a polyhedron.
First, let us start with a known definition.

DEFINITION 2.1 (Rockafellar (1970)). Let F be a subset of X. F is a face of X
if every line segment in X with a relative interior point in F has both end-points
in F .

There are many different forms for characterizing faces of a polyhedron. Among
others (see, for example, Yu and Zeleny (1975) or Murty (1985)), we have at our
disposal the following proposal developed in Jorge (2003). Let J ′ ⊆J =�1�����n�.

DEFINITION 2.2 (Jorge (2003), p. 125). We will say that a subset J ′ ⊆J is a
descriptor set for a face F of X if, and only if, F =F�J ′� where F�J ′� is given
by �x∈X/xj =0�∀j∈J ′�.

It can be proven that every face F of X can be described (not necessarily in a
unique form) through a descriptor set (see, Jorge (2003)).
For notational convenience, we define Rn

+ and Rk
++ as �x∈Rn/x�0� and �x∈

Rk/x>0�, respectively. Then, having in mind the linear constraint representation
of X given in (2), it is obvious that:

F�J ′�=�x∈Rn
+/A

J−J ′xJ−J ′ =b�xJ ′ =0�

It is easy to check that, in general, the larger the descriptor set is, the smaller
the face it describes.
An arbitrary face can have several different descriptor sets associated, which

in turn constitutes a disadvantage for characterizing purposes. This motivates the
definition of a new concept that overrides this difficulty.



4 J.M. JORGE

DEFINITION 2.3 (Jorge (2003), Definition 4). We will say that a subset J ′ ⊆J
is a maximal descriptor set if, and only if, there exists no subset J ′′ ⊆J that
contains J ′ as a strict subset and verifies F�J ′′�=F�J ′�.

The importance of the above concept lies in the one-to-one correspondence
that can be established between the faces of a polyhedron and their maximal
descriptor sets, as the following result states:

THEOREM 2.1 (Jorge (2003), Theorem 3). Every nonempty face F of X has a
unique maximal descriptor set associated.

2.2. SOME RESULTS ON EFFICIENCY FOR THE MOLP

DEFINITION 2.4. A face F of X is said to be efficient for problem P if all the
elements of F are efficient, that is, F ⊆EP . EP

f will denote the set of all efficient
faces of problem P.

Recall that, as is common knowledge, EP can be described as the union of all
efficient faces of P (see, for example, Steuer (1986)).
Now taking �∈Rk, it is possible to define a collection of parametric scalar

programs associated to problem (1) as,

P�≡max��tCx/x∈X��

If we denote by SP�
the set of all optimal solutions of P�, the following result is

well-known:

THEOREM 2.2 (Evans and Steuer (1973), Corollary 1.4). x̄∈EP if, and only if,
∃�∈Rk

++ such that x̄∈SP�
.

Denoting by e a vector whose entries are each equal to one and applying linear
duality to the above result we can obtain:

COROLLARY 2.1. Let X �=�. Then, EP �=� if, and only if, the system utA−
�tC�0t���e has a solution.

There are a great variety of procedures that conclude the efficiency of a face.
Particularly, the next result provides us with a simple test to check the efficiency
of a face when it comes described through its maximal descriptor set.

THEOREM 2.3 (Jorge (2003), Corollary 5). Let J ′ a maximal descriptor set.
Then, F�J ′�∈EP

f if, and only if ∃�∈Rk
++�∃s∈Rn

+�∃u∈Rm, verifying �tC+utA+
st=0 and sJ−J ′ =0.



A BILINEAR ALGORITHM FOR OPTIMIZING A LINEAR FUNCTION 5

Proof. ‘⇒’ Let x̄ be a point belonging to the relative interior of F�J ′�. Since J ′

is a maximal descriptor set we have that x̄J−J ′ >0. Now since x̄∈EP , by Theorem
2.2, ∃�∈Rk

++ such that x̄∈SP�
. Applying the duality theory of linear programming

and in particular the complementary slackness property (see, for instance, Murty
(1983)) we have that ∃�∈Rk

++, ∃s∈Rn
+, ∃u∈Rm, verifying �tC+utA+st=0 and

sJ−J ′ =0.
‘⇐’ Let �̄∈Rk

++, s̄∈Rn
+ and ū∈Rm, verifying �̄tC+ ūtA+ s̄t=0 and

s̄J−J ′ =0. So, ∀x∈F�J ′� we have that xts̄=0. Now, by the duality theory of
linear programming we have that F�J ′�⊆SP�̄

and therefore, by Theorem 2.2,
F�J ′�∈EP

f . �

Notice that the ‘if portion’ of Theorem 2.3 holds independently of the
maximality of the descriptor set. This property will be taken into account by
the algorithm proposed in Section 4.

3. Theoretical Justification

In this section we are going to show how we can choose an efficient face of a
MOLP P that improves a certain level �∈R through an objective function vtx.
Let J ′ ⊆J =�1�����n�.
First we will give an auxiliary property:

PROPOSITION 3.1. The system

Ax−by=0
vtx−�y�1
x�0� xJ ′ =0� y�1


 (4)

has a solution if, and only if, ∃x̂∈F�J ′� such that vtx̂>�.
Proof. ‘⇒’ Let �x̄�ȳ� be a solution for system (4). Set x̂=�1/ȳ�x̄. Then

Ax̂=b, x̂�0, x̂J ′ =0 and vtx̂��+�1/ȳ�>�. Thus x̂∈F�J ′� and vtx̂>�.
‘⇐’ Let x̂∈F�J ′� such that vtx̂>�. Then we can write: Ax̂=b, x̂�0, x̂J ′ =0,

vtx̂>�. Let 	∈�0�1� such that vtx̂−	��. Taking x̄=�1/	�x̂ and ȳ=1/	�1 it
is clear that �x̄�ȳ� is a solution for system (4). �

Now, let us consider the following problem:

min stx
s.t.
�tC+utA+st=0
Ax−by=0
vtx−�y�1
x�s�0� ��e� y�1




(5)



6 J.M. JORGE

Notice that problem (5) is a simplified disjoint bilinear program (Horst and
Tuy (1996)), that is lower bounded by 0.
The importance of problem (5) is due to the following result, which is key for

our purposes:

THEOREM 3.1. Program (5) is bounded, with optimal objective value 0 if, and
only if, ∃F ∈EP

f and ∃x̂∈F such that vtx̂>�.
Proof.
‘⇐’ By hypothesis ∃F ∈EP

f . We know, by Theorem 2.1, that every nonempty
face of a polyhedron has associated a unique maximal descriptor set. So, ∃J ′ ⊆J =
�1�����n� maximal descriptor set such that F =F�J ′�. Since F�J ′�∈EP

f , applying
Theorem 2.3, the following system �tC+utA+st=0, s�0, sJ−J ′ =0, ��e, has
a solution ��̄�ū�s̄�.
On the other hand, x̂∈F�J ′� verifies that vtx̂>�. By Proposition 3.1 it is equi-

valent to system (4) having a solution �x̄�ȳ�. Thus, it is clear that ��̄�ū�s̄�x̄�ȳ�
is a feasible solution for program (5) that satisfies s̄t x̄= s̄t

J ′ x̄J ′ + s̄t
J−J ′ x̄J−J ′ =0.

Having in mind that problem (5) is lower bounded by 0, we get that program (5)
is bounded, with optimal objective value 0.
‘⇒’ By hypothesis, program (5) is bounded, with optimal objective value 0.

Then we can consider an optimal solution ��̄�ū�s̄�x̄�ȳ� of this problem. Let
J ′ =�j∈J/s̄j >0� (notice that it is not necessarily a maximal descriptor set for
F�J ′�). By the remark made on Theorem 2.3 we get F�J ′�∈EP

f . Since �x̄�ȳ�
is a solution of system (4), Proposition 3.1 guarantees that ∃x̂∈F�J ′� verifying
vtx̂>� and therefore, the proof is complete. �

Notice that the proof given for Theorem 3.1 not only proves the existence of
an efficient face with the desired property of yielding an objective value greater
than a fixed level, but it also provides the procedure to obtain such face (J ′ =
�j∈J/s̄j >0��. The algorithm proposed in the next section will take advantage
of this fact.

THEOREM 3.2. If program (5) is bounded, with optimal objective value strictly
positive then vtx�� for all x∈EP .
Proof. Suppose on the contrary that ∃x̄∈EP verifying vtx̄>�. Since, we can

find F ∈EP
f such that x̄∈F , applying Theorem 3.1 we obtain that program (5)

is bounded, with optimal objective value 0. But, this is a contradiction with the
initial assumptions.

THEOREM 3.3. Assume that EP �=�. If program (5) is infeasible then there
exists no x∈X such that vtx>�.
Proof. Since EP �=�, applying Corollary 2.1 it is equivalent to system �tC+

utA+st=0, s�0, ��e, being feasible. But by hypothesis, the bilinear program



A BILINEAR ALGORITHM FOR OPTIMIZING A LINEAR FUNCTION 7

(5) is infeasible, so the system Ax−by=0, vtx−�y�1, x�0, y�1, must be
infeasible. Thus, by Proposition 3.1, we conclude that � ∃x∈X verifying vtx>�.

�

4. The Algorithm

Since EP can be described as the union of all efficient faces of P and having
in mind that each efficient face is, from a mathematical point of view, only
a polyhedron over which we can optimize a linear function very efficiently,
the results of the above section suggest the following procedure for solving
problem Q.
Without loss of generality, assume that EP �=�. Start with an arbitrary efficient

face. Set � to the optimal objective value of vtx over the considered face and
find, if possible, a new efficient face that allows a strictly improvement of level
�. Now repeat the procedure over the new face found until none efficient face
with the required condition can be obtained. The optimal objective value of Q
is �.
According to this idea, we are going to specify in a detailed fashion an algorithm

(named EFC) for solving problem Q.

4.1. STATEMENT OF THE ALGORITHM

Step 0� (Initialization)
If EP =�, STOP. Q has not feasible solutions.
Otherwise, let i=0 and �0=vtx̂0, being x̂0 an initial efficient solution.

Step 1� (Exploration)
Solve the following bilinear programming problem Ti:

min stx
s.t.
�tC+utA+st=0
Ax−by=0
vtx−�iy�1
x�s�0���e�y�1




Step 2� (Stopping Rule)
If program Ti is infeasible or bounded with an optimal objective value strictly
positive, STOP. The optimal objective value of Q is �i.
Otherwise (program Ti is bounded, with optimal objective value 0), continue.

Step 3� (Progression)
Let ��̄i�ūi�s̄i�x̄i�ȳi� be an optimal solution for Ti. Set J

i=�j∈J/s̄i
j >0�.

Solve the problem Qi≡max�vtx/x∈F�J i��.
If Qi is unbounded, STOP. Problem Q is unbounded.
Otherwise, let x̂i+1 an optimal extreme point of Qi and set �i+1=vtx̂i+1.
Set i= i+1 and go to Step 1.



8 J.M. JORGE

Before analyzing the properties of the algorithm just described, a few words
are necessary to clarify some details of it.
To begin with, in order to compute an initial efficient solution in Step 0 we

can use, among others, the method described in Ecker and Kouada (1975), which
can be readily accomplished by using the well-known simplex method (see, for
instance, Murty (1983)). However, the use of a good heuristic for computing
an initial efficient solution close to the optimal solution of Q can save a lot of
computational effort. In this sense, we propose the following heuristic procedure,
which begins by solving the linear relaxation of problem Q, given by:

max�vtx/x∈X�

and then employs the obtained solution as the entry point in the Ecker–Kouada
method. Although there is not guarantee on the quality of the solution generated by
this approach, at least it allows dealing with the complete efficiency possibility of
the underlying MOLP problem (see, for instance, Benson (1991b)) in a convenient
way.
On the other hand, Step 1 assumes the responsibility of finding an efficient

face that strictly improves the objective function value for problem Q obtained in
the previous iteration. Clearly, this is the most computationally demanding task
of the algorithm since it needs to solve the simplified disjoint bilinear program
(BLP) Ti.
Problem BLP has been extensively studied in the literature for more than

thirty years. See, for instance, Horst and Tuy (1996) for a survey. Although the
resolution of Ti is far from being considered straightforward, it is possible to find
several BLP solvers in some recent contributions (see, for instance, Audet et al.
(1999) and Alarie et al. (2001)).
Finally, the implementation of both Step 2 and Step 3 has not difficulties.

Particularly, note that Step 3 only requires the solution of a standard LP.

4.2. CONVERGENCE AND OTHER PROPERTIES OF THE ALGORITHM

The following results will show that the feasible extreme points x̂i generated
by the algorithm for problem Q will yield monotonically increasing objective
function values. Furthermore, we will see that the algorithm only needs a finite
number of iterations to find a global optimal solution or to conclude that Q is
unbounded.
One of the more important features of our algorithm is that an improved feasible

solution for problem Q is found in each iteration. Indeed:

PROPOSITION 4.1. The algorithm yields monotonically increasing objective
function values for problem Q.
Proof. Let �i the level imposed to the objective function vtx in the algorithm

iteration i. By Theorem 3.1, if program Ti is bounded, with optimal objective



A BILINEAR ALGORITHM FOR OPTIMIZING A LINEAR FUNCTION 9

value 0, then F�J i�∈EP
f and ∃x̂∈F�J i� such that vtx̂>�. Since in step 3 we

compute �i+1 as the optimal objective value of problem Qi≡max�vtx/x∈F�J i��,
this implies �i+1>�i. �

The proposed algorithm only considers, for each encountered face, one descrip-
tor set (not necessarily maximal) and discards from further consideration all those
descriptor sets corresponding to faces contained in some other already obtained.
Before showing this statement we need a preliminary result:

LEMMA 4.1. Let J ′�J ′′ ⊆J such that F�J ′′�⊆F�J ′� and assume that the
program max�vtx/x∈F�J ′�� is bounded, with optimal objective value �. Let

�� an arbitrary constant. Then, the system:

Ax−by=0
vtx−
y�1
x�0�xJ ′′ =0�y�1


 (6)

has no solution.
Proof. By hypothesis F�J ′′�⊆F�J ′�. Suppose on the contrary that the system

(6) is feasible. Applying Proposition 3.1 we have ∃x̂∈F�J ′′�⊆F�J ′� such that
vtx̂>
��, but this is untenable. �

Now, we are able to conclude the aforementioned result.

THEOREM 4.1. If J i is the descriptor set yielded by the algorithm in the iteration
i, then none J ′ ⊆J , such that F�J i�⊇F�J ′� will be considered in a later iteration.
Proof. Let J ′ ⊆J such that F�J i�⊇F�J ′�. Let �i the objective level used by

the bilinear problem Ti in the algorithm iteration i. By applying Lemma 4.1 we

get that ∀
��i, the system
Ax−by=0
vtx−
y�1
x�0� xJ ′ =0� y�1


 has no solution. Since the previous

system constitutes a convenient particularization of part of the restriction set of
Ti, Propositions 3.1 and 4.1 assure that J ′ can not be generated in a later iteration
j of the algorithm by solving program Tj . �

As a direct consequence, combining that P has a finite number of efficient faces
with Theorem 4.1, it is straightforward to prove the convergence of the proposed
algorithm:

COROLLARY 4.1. The algorithm executes only a finite number of iterations.

If we denote by �EP
xp� the total number of efficient extreme points of problem

P, it is clear that, in the worst case, the number of iterations executed by the
algorithm is �EP

xp�+1.
Finally, having in mind the previous properties, we can prove that the algorithm

is valid.



10 J.M. JORGE

COROLLARY 4.2. If EP �=�, the algorithm finds an exact, globally optimal
solution for problem Q or concludes that Q is unbounded.
Proof. Straightforward since P has a finite number of efficient faces and by

construction, in each iteration, the algorithm finds an efficient face that strictly
improves the objective function value for problem Q obtained in the previous
iteration or concludes that none exists with the required property (Theorem 3.1).

�

4.3. AN EXAMPLE

Consider the following multiple objective linear programming problem P:

VMAX x
s.t. x∈X

}

where X is the polyhedron given by


x∈R3+

/

1 1 0
1 0 0
0 1 0
0 0 1


 x�



5
3
3
1




.

The feasible set X is shown in Figure 1. It is clear that EP is the edge between
x2=�3� 2� 1�t and x3=�2� 3� 1�t. Furthermore, the set of all efficient extreme
points, EP

xp, is �x2� x3�.
As an illustration of our algorithm, we want to minimize the first objective

function of problem P over EP . This is equivalent to solve the problem Q given
by max��−1� 0� 0�x/x∈EP�. Notice that the optimal objective value of our
original problem is the same that the obtained solving Q, but with reversed sign.
Graphically it is easy to see that, the maximum value of −x1 over X equals

0. However, the optimal objective value of Q is −2, which is achieved at the
vertex x3.

Figure 1. The feasible set X.



A BILINEAR ALGORITHM FOR OPTIMIZING A LINEAR FUNCTION 11

For algorithmic requirements we need a description of the feasible region X in
standard form. This is accomplished by adding the slack variables x4 to x7. Thus,
the coefficient matrices to be considered are:

A=



1 1 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1


� b=



5
3
3
1


 and C=


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0


�

One thing more before executing the algorithm. For doing the procedure geomet-
rically more intuitive, all the solutions of problems Qi will be given with their
slack variable values omitted.

Step 0�
By using the Ecker–Kouada method we compute an initial efficient solution x̂0

given by �3� 2� 1�t. Note that this points is the vertex x2.
We set i=0 and �0=−3.

Iteration 0�
Step 1�
Solving the bilinear programming problem T0, we obtain that it is bounded,

with (globally) optimal objective value 0, being one of its optimal solutions the
one given by ��̄0�ū0�s̄0�x̄0�ȳ0�, where: �̄0=�1� 1� 1�t�ū0=�−1� 0� 0� −1�t�s̄0=
�0� 0� 0� 1� 0� 0� 1�t�x̄0=�2� 3� 1� 0� 0� 1� 0�t and ȳ0=1.
Step 3�
Thus, J 0=�4�7�, which is the maximal descriptor set associated to the edge

joining the vertices x2 and x3.
Now we have to solve problem Q0≡max�vtx/x∈F�J 0��.
We find that an optimal solution for Q0 is x3=�2� 3� 1�t, with optimal objective

value �1=−2.
We set i=1 and proceed to iteration 1.

Iteration 1�
Step 1�
We have to solve the bilinear program T1. In this case, we obtain that

T1 is bounded but with (globally) optimal objective value equal to 1. In
particular, one of its optimal solutions is the given by ��̄1�ū1�s̄1�x̄1�ȳ1�,
where: �̄1=�1� 1� 1�t�ū1=�−1� 0� 0� −1�t�s̄1=�0� 0� 0� 1� 0� 0� 1�t�x̄1=
�1� 3� 1� 1� 2� 0� 0�t and ȳ1=1.
Step 2�
Since the optimal objective value of T1 is strictly positive, we STOP. The

extreme point x3=�2� 3� 1�t is an optimal solution for problem Q, whose optimal
objective value equals �1=−2.

5. Numerical Results

The algorithm described in Section 4 was coded in C (compiler gcc) and run on
a PC Pentium at 450 Mhz with 256 Mb of RAM under Linux operating system.



12 J.M. JORGE

Alarie et al. (2001)’s implementation of the algorithm CBA has been used to solve
the disjoint bilinear programming problem. Additionally, the Cplex 6.0 library
has been used to solve the linear programs.
In order to test the performance of our code, a total of 1080 problems, with

a 25% nonzero density, were randomly generated according to the next scheme,
similar to that followed by Sayin (2000) in his experimental tests. Elements of
the matrix A, the vector b and the matrix C were randomly drawn from discrete
uniform distributions in the range �1�30�, �50�300� and �−10�10�, respectively.
To avoid the infeasibility, all the constraints of each problem are of the ‘�’

type. Additionally, to prevent unboundedness, the constraints of each problem
were generated with all left hand side coefficients positive.
The vector v was generated in four different ways, describing four cases of

problems. In Case 1, v is a dense vector randomly generated according to the
same distribution as the objective coefficients of the underlying MOLP problem.
In Case 2, v is a weighted combination of the rows of the objective coefficient
matrix C, where the weights are randomly generated using a uniform distribution
in the interval �−1�1� and at least one of them is negative. In Case 3, v is the
first row of C reversed in sign. Case 4 is like Case 2, taking the weights from
the interval �−1�0�.
For each of these cases, 9 categories of problems were selected, according to

the number of variables and constraints. The number of objectives k was taken
as 3, 5 or 7. Finally, in each defined class we solved 10 test problems.
Computational results are summarized in Tables 5.1–5.3, which contain the

average number of iterations and the average computing time (in seconds) for
solving the instances. Also, in all the tables we report the minimum and the
maximum of each measure in brackets.
An overall look at the results shown in Table 5.1 indicates that the algo-

rithm presented compares favorably with the results obtained by Sayin (2000).
However, it is worth noting that the hardware used and some characteristics of the
test problems are different in both experiments, which only allows for cautious
comparisons.
Obviously, problem difficulty is highly related to the size of the problem. In this

way computational requirements of the algorithm increase significantly with the
number of variables and restrictions, as can be inferred from Tables 5.2 and 5.3.
Particularly, the results listed in Table 5.2 show that an increase in the number of
variables of the problem requires more computational effort than increasing the
number of restrictions, a difference that is rather common sense since the number
of restrictions is in general inversely related to the size of the feasible region.
As far as problem dimensions is concerned, Table 5.3 reports results about the
performance of the algorithm when we increase simultaneously the number of
variables and constraints. Note that in some categories the time needed for an
exact solution is even smaller than the demanded by the heuristic proposed in
Sayin (2000).



A BILINEAR ALGORITHM FOR OPTIMIZING A LINEAR FUNCTION 13

Table 5.1. CPU Times (seconds) and number of iterations for the initial test problems

C1 C2 C3 C4

m×n×k Time Niter Time Niter Time Niter Time Niter

10×10×3 0.368 1.6 0.261 1.3 0.17 1.1 0.456 1.6
[0.09, 0.65] [1, 3] [0, 0.68] [1, 2] [0, 0.41] [1, 2] [0.25, 0.84] [1, 3]

5 0.424 2.5 0.229 1.6 0.176 1.5 0.346 2.1
[0, 0.74] [1, 4] [0, 0.58] [1, 3] [0.01, 0.5] [1, 3] [0.01, 0.67] [1, 3]

7 0.21 1.4 0.139 1.4 0.167 2.2 0.361 2.5
[0, 0.54] [1, 2] [0, 0.4] [1, 3] [0, 0.38] [1, 5] [0.01, 0.6] [1, 4]

15×10×3 0.342 1.3 0.307 1.3 0.255 1.3 0.43 1.6
[0, 0.97] [1, 3] [0, 2.27] [1, 4] [0, 0.74] [1, 3] [0.01, 0.95] [1, 3]

5 0.575 1.9 0.273 1.1 0.267 1.4 0.932 2.9
[0.01, 1.63] [1, 3] [0.01, 0.47] [1, 2] [0.01, 0.64] [1, 2] [0.3, 1.82] [1, 5]

7 0.343 1.7 0.287 1.4 0.126 1.1 0.629 2.7
[0, 0.87] [1, 3] [0, 1.11] [1, 4] [0, 0.41] [1, 2] [0.01, 1.19] [1, 4]

15×12×3 0.766 1.8 0.536 1.7 0.495 1.5 1.029 2.2
[0.01, 1.7] [1, 3] [0, 1.57] [1, 3] [0.13, 1.33] [1, 3] [0.41, 1.97] [2, 3]

5 0.771 2.4 0.347 1.3 0.626 1.5 1.526 3
[0.01, 1.69] [1, 4] [0, 0.74] [1, 2] [0, 2.8] [1, 3] [0.44, 5.53] [1, 6]

7 0.771 2.4 0.59 1.6 0.152 1.4 1.177 4
[0, 1.46] [1, 4] [0, 1.55] [1, 3] [0, 0.48] [1, 3] [0.3, 2.07] [1, 7]

A remarkable point in our experiments is the fact that the average number of
iterations always remains very low (under 8). This seems to be an intrinsic char-
acteristic of the algorithm, rather than an accident; however, this point requires
further study.

Table 5.2. The effect of increasing the number of constraints (CPU seconds and number of
iterations)

C1 C2 C3 C4

m×n×k Time Niter Time Niter Time Niter Time Niter

10×15×3 0.548 2 0.153 1.4 0.326 1.8 0.586 2.6
[0.21, 1.58] [1, 4] [0, 0.35] [1, 2] [0.11, 0.81] [1, 5] [0.32, 0.93] [2, 5]

5 0.763 2.2 0.568 2.5 0.314 2 0.913 3.2
[0.01, 2.61] [1, 6] [0, 1.48] [1, 6] [0, 0.92] [1, 4] [0.24, 1.96] [1, 6]

7 0.325 1.7 0.214 1.4 0.283 1.8 0.815 2.8
[0, 0.85] [1, 3] [0, 1.02] [1, 4] [0.01, 0.4] [1, 4] [0, 1.3] [1, 4]

12×15×3 1.078 2.2 0.463 1.4 0.271 1.5 0.768 2.7
[0.39, 2.6] [1, 4] [0, 1.24] [1, 2] [0, 0.85] [1, 3] [0, 1.35] [1, 5]

5 0.964 2.7 0.479 2.4 0.234 1.2 0.731 2.9
[0.25, 3.41] [1, 7] [0, 1.72] [1, 6] [0, 0.69] [1, 2] [0, 1.15] [1, 6]

7 0.788 2.4 0.435 2 0.307 1.9 1.022 3.7
[0, 1.64] [1, 5] [0, 1.54] [1, 5] [0, 1] [1, 5] [0.01, 2.7] [1, 6]

15×15×3 1.076 1.7 0.771 2.1 1.294 2.1 1.822 2.9
[0, 2.48] [1, 3] [0, 1.95] [1, 4] [0.33, 5.01] [1, 5] [0.48, 4.15] [2, 6]

5 0.907 2.2 0.585 1.9 0.297 2.2 1.016 3
[0, 1.9] [1, 4] [0, 1.66] [1, 3] [0, 0.87] [1, 6] [0.38, 2.57] [1, 4]

7 1.155 2.1 0.212 1.3 0.263 1.4 1.315 3.1
[0, 2.82] [1, 3] [0, 0.62] [1, 2] [0, 1.9] [1, 4] [0, 3.18] [1, 5]



14 J.M. JORGE

Table 5.3. The effect of increasing the number of variables and constraints (CPU seconds
and number of iterations)

C1 C2 C3 C4

m×n×k Time Niter Time Niter Time Niter Time Niter

20×20×3 4.916 2.2 2.512 2.2 1.045 2.3 5.285 3.1
[2.19, 8.67] [1, 4] [0, 8.56] [1, 5] [0.32, 2.11] [1, 4] [2.07, 10.33] [2, 5]

5 5.397 2.5 0.789 1.8 0.809 2.7 8.733 4.5
[1.14, 22.63] [1, 5] [0, 2.82] [1, 5] [0.23, 2.1] [1, 5] [1.6, 35.46] [3, 9]

7 4.606 2.4 0.774 1.8 0.2133 3 4.213 5.9
[0, 20.31] [1, 8] [0, 2.1] [1, 4] [0, 10.06] [1, 8] [0.98, 8.32] [3, 8]

25×25×3 14.295 2.7 25.86 2.6 19.561 3.5 16.807 3.7
[2.25, 47.73] [1, 5] [0.01, 216.88] [1, 9] [0.63, 124.51] [1, 7] [1.2, 39.41] [1, 7]

5 13.547 4.5 4.064 2.8 19.32 3.3 17.367 7.1
[2.27, 54.05] [2, 8] [0, 19.55] [1, 8] [0.41, 86.4] [1, 7] [1.4, 53.74] [4, 10]

7 8.189 4.6 1.314 2.4 4.349 2.2 9.347 6.6
[2.25, 13.83] [1, 8] [0, 3.51] [1, 6] [0.4, 13.56] [1, 4] [2.7, 23.1] [1, 14]

30×30×3 63.288 3.6 14.725 2.8 39.908 3.3 49.179 4.5
[6.66, 216.43] [1, 7] [0, 64.38] [1, 7] [1.78, 350.92] [1, 6] [6.08, 234.26] [2, 9]

5 23.992 3 2.976 1.9 5.234 2.5 30.432 5.2
[0.01, 148.15] [1, 5] [0, 7.58] [1, 5] [0.01, 16.42] [1, 7] [2.36, 89.82] [3, 8]

7 50.046 6.2 9.21 2.7 16.646 4 60.03 7.7
[4.92, 171.27] [2, 13] [0, 57.55] [1, 8] [0, 49.62] [1, 8] [5.73, 259.39] [3, 15]

Many refinements of the basic algorithm here presented are possible to improve
the performance of our implementation. These include, among others:
(i) Using better heuristics for computing an initial efficient solution in Step 0

of the algorithm (thus, our algorithm can be combined in a nice way with the
heuristic proposed in Sayin (2000)).
(ii) Improving at least three important aspects concerning the implementation of

the CBA algorithm in order to completely fit this particular context: (a) Extending
the entry format for managing different types of variables (not only nonnegatives)
and the constraints (not only of the ‘�’ sort). Although it is easy to adapt an
arbitrary formulation to any entry format, sometimes the number of variables
and restrictions increase considerably during the translation. (b) Allowing a hot
restarting from known feasible solutions for the bilinear problem. Note that our
algorithm solves in each iteration a problem very similar to the problem solved in
the last iteration (only a single coefficient of one constraint of the BLP problem
changes) and it is easy, e.g. by the mountain climbing procedure of Konno (see,
for instance, Horst and Tuy (1996)), to find a good feasible solution for the BLP
from the previous one. (c) Since all the bilinear problems solved, except the
last one have an optimal objective value of 0, the idea of establishing a cut that
exploits this characteristic probably would save a great deal of computational
effort.



A BILINEAR ALGORITHM FOR OPTIMIZING A LINEAR FUNCTION 15

6. Conclusions

The problem Q of optimizing a linear function over the efficient set of a MOLP
has an inherently difficult nature due to the characteristics that describe it as a
global optimization problem.
In this paper we have presented an algorithm that finds an exact globally

optimal solution for problem Q, after a finite number of iterations and without
making any assumptions on the boundedness of the efficient set EP .
The algorithm generates a sequence of distinct efficient faces over which the

objective function of problem Q is optimized. From a mathematical point of view,
our procedure needs to solve, in each iteration, a bilinear program (step 1) and a
scalar linear programming problem (step 3).
Mainly, the computational power of the algorithm comes from the following

two features: first, the efficient faces found need not be adjacent or form a
connected set and second, an improved feasible solution for problemQ is obtained
in each iteration.
Although the worst case is exponential, our preliminary numerical results are

very encouraging. In its present state, the algorithm performs fairly well (very
low number of iterations and reasonable computing times) with problems up to
30 variables and 30 constraints.
Moreover, further improvements of performance can be yet achieved. In fact,

the area of bilinear programming is constantly evolving, and new advances in
this field will yield important computational savings in our algorithm since Step
1 appears as its main bottleneck. Additionally, the use of good heuristics for
computing an initial efficient solution such as that of Sayin (2000) in Step 0 can
significantly reduce the number of iterations required for our algorithm when it
is involved with larger problems.
For all these reasons the procedure suggested throughout this work is expected

to represent a useful and practical tool in the field of multiple objective linear
programming.

Acknowledgements

The author is indebted to Dr. Charles Audet for kindly providing the source code
of the CBA algorithm and to Dr. Marianela Carrillo for her ongoing support.

References

Alarie, S., Audet, C., Jaumard, B. and Savard, G. (2001), Concavity cuts for disjoint bilinear
programming, Mathematical Programming, 90, 373–398.

Audet, C., Hansen, P., Jaumard, B. and Savard, G. (1999), A symmetrical linear maxmin approach
to disjoint bilinear programming, Mathematical Programming, 85, 573–592.

Benson, H. (1984), Optimization over the efficient set, Journal of Mathematical Analysis and
Applications, 98, 562–580.



16 J.M. JORGE

Benson, H. (1991a), An all-linear programming relaxation algorithm for optimizing over the efficient
set, Journal of Global Optimization, 1, 83–104.

Benson, H. (1991b), Complete efficiency and the initialization of algorithms for multiple objective
programming, Operations Research Letters, 10, 481–487.

Benson, H. (1992), A finite, nonadjacent extreme-point search algorithm for optimization over the
efficient set, Journal of Optimization Theory and Applications, 73(1), 47–64.

Benson, H. (1993), A bisection-extreme point search algorithm for optimizing over the efficient set
in the linear dependence case, Journal of Global Optimization, 3, 95–111.

Benson, H. and Lee, D. (1996), Outcome-based algorithm for optimizing over the efficient set of a
bicriteria linear programming problem, Journal of Optimization Theory and Applications, 88(1),
77–105.

Benson, H. and Sayin, S. (1993), A face search heuristic algorithm for optimizing over the efficient
set, Naval Research Logistics, 40, 103–116.

Benson, H. and Sayin, S. (1994), Optimization over the efficient set: four special cases, Journal of
Optimization Theory and Applications, 80(1), 3–18.

Ecker, J. and Kouada, I. (1975), Finding efficient points for linear multiple objective programs,
Mathematical Programming, 8, 375–377.

Ecker, J. and Song, J. (1994), Optimizing a linear function over an efficient set, Journal of
Optimization Theory and Applications, 83(3), 541–563.

Evans, J. and Steuer, R. (1973), A revised simplex method for linear multiple objective programs,
Mathematical Programming, 5, 54–72.

Horst, R. and Tuy, H. (1996), Global Optimization (Determinsistic Approaches), 3rd Edition,
Springer.

Isermann, H. and Steuer, R. (1987), Computational experience concerning payoff tables and
minimun criterion values over the efficient set, European Journal of Operational Research, 33,
91–97.

Jorge, J. (2003), Maximal descriptor set characterizations of efficient faces in multiple objective
linear programming, Operations Research Letters, 31, 124–128.

Mangasarian, O. (1969), Nonlinear Programming, McGraw-Hill.
Murty, K. (1983), Linear Programming, John Wiley & Sons.
Murty, K. (1985), Faces of a polyhedron, Mathematical Programming Study, 24, 30–42.
Philip, J. (1972), Algorithms for the vector maximization problem, Mathematical Programming, 2,
207–229.

Rockafellar, R. (1970), Convex Analysis, Princeton University Press.
Sayin, S. (2000), Optimizing over the efficient set using a top-down search of faces, Operations
Research, 48, 65–72.

Steuer, R. (1986), Multiple Criteria Optimization: Theory, Computation and Application, John
Wiley & Sons.

Yu, P. and Zeleny, M. (1975), The set of all nondominated solutions in linear cases and a
multicriteria simplex method, Journal of Mathematical Analysis and Applications, 49, 430–468.


